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Introduction

Stimulated Brillouin scattering (SBS) is a plasma
instability in which laser light, propagating through 
an underdense plasma, is scattered by self-excited ion-
acoustic waves.1

In inertial confinement fusion (ICF) applications,
backscattered laser light is wasted energy that is not
absorbed by the target. It is neither converted to x rays
by the laser-heated hohlraum (indirect drive) nor used
to directly implode the target (direct drive). Energy lost
in this manner has to be replaced by a compensating
increase in the power of the laser. 

Scattering in directions other than backward, or near
backward, gives rise to a different concern. This obliquely
scattered light may be absorbed elsewhere in the
hohlraum, or by the capsule, changing the spatial dis-
tribution of absorbed energy and affecting implosion
symmetry. Although scattering adds to the effective
“spot motion” it can, within limits, be tuned away in the
target design. The real concern is that the shot-to-shot
variation of the scattering might exceed the tolerance
of the design.2–4

Because of this consideration, it would be highly
desirable to limit SBS scattering to not more than a
few percent of the incident power. Limiting laser
intensity and the hohlraum gas density, for instance,
are possibilities. In this article, we discuss the possible
benefits of choosing hohlraum gases5 and/or
hohlraum wall materials6 that contain multiple-ion
species to increase the ion Landau damping of the SBS
ion waves.

Under cryogenic constraints, the only candidate
for a mixed species gas is a hydrogen–helium
(H–He) mixture, currently used in the National
Ignition Facility (NIF) designs.2,3 Gases such as
methane, propane, pentane, and carbon dioxide7

have been used in Nova hohlraum and gas-bag
experiments. Recent Nova experiments have used
Au hohlraums with multilayers of Au and Be to coat
the inside walls.

Landau Damping of Ion-
Acoustic Waves

Theoretically, increasing the linear damping rate of
the SBS ion waves, all else equal, should reduce the
amplitude to which they grow, and consequently reduce
the amount of scattered light. If the reduction of linear
growth rate is sufficient to force the instability to remain
in a linear regime, there is a quantitative relation between
growth rate and reflectivity. Conversely, if the relevant
rates are reduced, but the ion waves are nevertheless
driven nonlinear, then the connection between increased
damping and reduced scatter is less direct. A connection is
anticipated, however, and is the subject of current research.

To our benefit, nature provides the natural phe-
nomenon of (ion) Landau damping. This is a kinetic
(as opposed to fluid) effect, in which ions in the distri-
bution function whose (thermal) velocities match the
phase speed of the ion acoustic wave, “surf” on the
wave, thereby extracting energy and damping it. More
precisely, ions slightly slower than the wave are accel-
erated, those slightly faster are decelerated. Because, in
a thermal distribution, the number of ions decreases
with increasing velocity (i.e., the distribution function
has negative slope), the net effect is damping.

When the ion acoustic velocity greatly exceeds the
characteristic thermal velocity, the number of ions
available on the tail of the distribution is very small,
and the damping is weak. In the opposite limit, where
the ion thermal velocity greatly exceeds the acoustic
velocity, the damping is again weak because the distri-
bution function is locally almost flat. Maximum
damping occurs in the intermediate case where the ion
acoustic velocity is two to three times the thermal
velocity. Because, at a given ion temperature, the ion
thermal velocity varies inversely with the square root
of the atomic mass, the ion Landau damping can be
controlled by judicious choice of material composition.

In a single-ion-species underdense plasma, the ratio
of the ion acoustic speed to the ion thermal velocity

is large for both mid- and high-
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both because Z>>1 and because electron-ion collisions
are insufficient for the ion temperature Ti to equilibrate
with the laser-heated electrons, where Te is the electron
temperature. In Nova hohlraums, Ti/Te ≈ 0.2; for the
longer pulse lengths in NIF hohlraums, we anticipate
Ti/Te ≈ 0.5. Because of this, the fraction of ions in such
a plasma near the phase velocity of the ion wave is very
small, making ion Landau damping very weak. 

Typically, adding a low atomic number component,
such as H, to a plasma modestly changes the ion acoustic
frequency, but greatly increases the number of high-
thermal-velocity ions, thereby dramatically increasing
the Landau damping. This multispecies effect was first
examined in the early days of magnetic fusion research
and was experimentally tested in a variety of experiments,8

including an observation of reduced SBS in a microwave
plasma.9 This work has been extended to consider
plasmas of interest to ICF5 and is summarized here.

We consider the kinetic treatment of ion acoustic
waves in a plasma, consisting of an arbitrary number of
ion species. We assume Maxwellian velocity distributions,
with common ion temperature Ti and electron temper-
ature Te. The electrostatic normal-mode frequencies of
the plasma are then given by the zeroes of the plasma
dielectric function ε, which relates the frequency ω to the
wavenumber k, of any given mode, written as follows:

(1)

where the electron susceptibility is χe and the ion sus-
ceptibility for species β is χiβ. The susceptibilities can
be expressed as derivatives of Fried and Conte’s Z
function10

and 

(2)

in which the plasma frequency and thermal speed are
ωpe and ve for the electrons and ωpiβ and viβ for the ion
species. The thermal speed of species β is defined here
by                                (consistent with the practice in the
laser–plasma literature but in contrast, for example, to
Swanson10), where Mp is the proton mass, and Tβ and
Aβ are the temperature, in energy units, and the atomic
mass of species β. We ignore flow. If the component
species were to all flow with velocity u, ω would be
replaced in all of the above by (ω − k • u).

The theoretical discussion is more straightforward if
we convert to normalized units: K ≡ kλDe, Ω = ω/ωpe, and
Vβ = vβ/ve, with electron Debye length λDe ≡ ve/ωpe. We
take the ionic charge and the number fraction of the β

species to be Zβ and fβ. The total ion density ni and the
electron density ne are related through the average
charge     , as                 . The average charge and ion
number densities are then related by

and  (3)

In these units, 

(4)

Although this dispersion relation has an infinite
number of roots,         , only a small number of them
have ωi << ωr, corresponding to freely propagating
waves (where i and r denote the imaginary and real
parts of the complex mode frequency). For these, their
phase velocity                  is such that it is either much
larger than or much less than the thermal velocity of
each species. The Landau damping contribution of
each species is then small because the number of parti-
cles at the phase velocity, or the slope of the particle
distribution function, is small.

For high enough electron temperature [approximately
when                                                ], there is a “fast” ion
acoustic wave that is weakly damped. The        denote
averages weighted by the ion fractions. Al is the atomic
number of the lightest component. The condition
implies that the sound speed is much greater than the
thermal velocity of the lightest ion species. The sound
speed is approximated by

(5)

where me is the electron mass.
In un-normalized quantities,

(6)

The sound speed is of course much slower than the
electron thermal velocity. The electron damping puts a
lower limit on the total ion wave damping, which is
approximately given by

(7)
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which gives a minimum damping decrement of 0.01–0.015
in cases of interest.

The “fast” mode is the direct analog of the usual sin-
gle-species ion wave. However, in a multi-ion species
plasma there are possibilities for additional “slow”
modes. These modes have sound speeds intermediate
between the thermal velocities of a light group of ion
species and a heavy group. In these modes, the light
ions act like the electrons in the fast mode. They,
together with the electrons, react so as to charge–neu-
tralize the heavy ions. Unlike the electrons, the light
ions are repelled by the regions of heavy-ion concen-
tration. Their motion is thus out of phase with the
heavy ions. This contrasts with the fast mode where
the electron and ion species motions are in phase, so
that the plasma is effectively a single fluid.

A weakly damped fast mode always exists for suffi-
ciently large Te/Ti, whereas slow modes exist for at most
a finite range of Te/Ti. Detailed criteria for the existence
of these modes have been published elsewhere.12

Asymptotic kinetic and multifluid approximations for
the frequency and damping decrement of the slow
modes are readily derived, but are only modestly
quantitatively accurate, essentially because the ratios
of the sound speed to the ion thermal velocities are
neither particularly large nor small.

Figures 1 and 2 show the sound speed and damping
decrement as a function of Ti/Te for equal mixtures of
H with He and C—mixtures of interest for the NIF and
current Nova experiments. In each case, there are fast
and slow modes. The fast mode is less damped when

Ti/Te is <0.2 or 0.32, respectively, with the slow mode
becoming the lesser damped mode at higher values of
Ti/Te. One consequence of this is that the sound speed
of the dominant mode increases less rapidly with Ti
than would be anticipated from the fluid result [see
Eqs. (5) and (6)].

Also shown in Figs. 1 and 2 are the thermal veloci-
ties of the two ion species, which can be compared
with the respective sound velocities. In contrast with
the CH mixture, the H thermal velocity in the H–He
mixture does not actually exceed the slow mode phase
speed. Because of this, the ion acoustic damping for
H–He mixtures is very strong at the Ti/Te ratios antici-
pated for NIF hohlraums (~0.5).

SBS in Multispecies Plasmas
The kinetic dispersion relation for SBS is

(8)

The frequency and wave number of the pump and ion
wave are (ω0, k0) and (ω, k), respectively. The simplest
linear model to assess the effect of ion acoustic damp-
ing on SBS is to take the plasma to be a homogeneous
slab and the laser beam to be uniform. The time devel-
opment of the SBS instability in such a model has been
analyzed in detail.13 The instability grows as if the

FIGURE 1. A plot of the damping decrement ν/ω and the ion-acous-
tic and thermal velocities normalized to the electron thermal velocity
vs the ion-electron temperature ratio Ti/Te. The H–He plasma has 
Te = 3 keV and ne = 1021 cm–3. (50-01-1195-2518pb01)
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FIGURE 2. A plot of the damping decrement ν/ω and the ion acoustic
and thermal velocities normalized to the electron thermal velocity 
vs the ion-electron temperature ratio Ti/Te. The CH plasma has 
Te = 3 keV and ne = 1021 cm–3. (50-01-1195-2519pb01)
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medium were infinite for the first few light transit
times. The appropriate growth rate is given by the root
of Eq. (8) for complex ω maximized over (real) k. 

In a reduced mode-coupling description, this tem-
poral growth rate is given by

(9)

where γ0 is the growth rate in the absence of damping,
and ν is the ion-acoustic damping rate. One therefore
anticipates that the initial growth rate is unaffected by
damping whenever γ0>>ν. This result is borne out by
solutions of the full kinetic dispersion relation [see 
Eq. (8)]. Unless the intensity is relatively low (less than
~1014W/cm2) and the damping is high (decrement
>0.1), the kinetic temporal growth rate is essentially
independent of material composition. 

However, provided the damping is strong enough
to prevent absolute instability, which in the mode-cou-
pling model requires                                      , where cs is
the sound speed, the instability evolves into a steady
state in which the scattered wave amplifies exponen-
tially from noise across the plasma. The spatial growth
rate is given by the imaginary part of the solution of
the dispersion relation [see Eq. (8)] for (complex) k,
maximized over the frequency shift ω. 

Below the absolute threshold, it is a good approxi-
mation to neglect the imaginary part of k in evaluating
the susceptibilities, giving the following expression for
the spatial growth rate:

(10)

which is directly proportional to the Thomson cross section.
It might be expected that whenever two weakly

damped ion acoustic waves are present, the SBS (and
Thomson) spectra would exhibit two peaks. In fact,
except for special choices of material and electron-ion
temperature ratio, a single peak is observed. This is
because it is not easy to satisfy the Rayleigh criterion
that the separation of the peaks has to exceed their
combined widths.

Figure 3 shows the spatial amplification rate for back-
ward SBS from a 1015 W/cm2, 0.35-µm laser in a fully-
ionized CH plasma, with Te = 3 keV and ne = 1021 cm–3,
plotted against the wavelength shift of the scattered
light in Angstroms. Curve A in Fig. 3 shows Ti/Te = 0.075.
At this temperature, in comparison with Fig. 2, the fast
mode is weakly damped and the slow mode is nonres-
onant. The growth rate curve shows a sharp peak, with
a shift corresponding to the fast wave ion-acoustic fre-
quency. Curve B shows Ti/Te = 0.2, where both modes
are modestly (and equally) damped, but only a single
broad peak is seen in the spectrum, with an inferred

ion-acoustic velocity between that of the two ion modes.
In curves C and D where Ti/Te increases, the peak
shifts and narrows, reflecting a contribution only from
the slow mode.

Figure 4 plots the spatial growth rate (maximized
over scattered frequency) for SBS backscatter vs Ti/Te

FIGURE 3. A plot of the SBS backscatter spatial amplification rate 
in a CH plasma vs the wavelength shift of the scattered light. The
0.35-µm IL = 1015 W/cm2, and the plasma has Te = 3 keV and 
ne = 1021 cm–3. (50-01-1195-2520pb01)
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FIGURE 4. A plot of the maximum (over wavelength) SBS backscat-
ter spatial amplification rate vs Ti/Te for various CH mixtures for
the conditions of Fig (3). (50-01-1195-2521pb01)
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for various C–H mixtures. Here, adding increasing 
fractions of light H ions to the C plasma decreases the
spatial amplification rate for SBS. In these calculations,
the laser intensity IL = 1014 W/cm2, Te = 3 keV, and 
ne = 1021cm–3. Below the absolute threshold, the
kinetic growth rates scale as its fluid approximation,
namely as ILne/Te, keeping the material variation intact.

Conclusion
The Landau damping of ion-acoustic waves can be

substantially higher in plasmas that contain mixtures
of ionic species than that encountered in single-species
plasmas. In multispecies plasmas, the linear spatial
growth rate of stimulated Brillouin scattering is sub-
stantially reduced. Despite the big gap between linear
models of SBS in a uniform plasma and the realities of
nonlinear saturation, structured laser beams, and
nonuniform plasmas, the simplicity of the physics sug-
gests that the tailoring of material compositions to
maximize Landau damping will be a powerful tool to
control undesired SBS in ICF applications.
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